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Abstract

Large Language Models for understanding and
generating code (code LLMs) have witnessed
tremendous progress in recent years. With the
rapid development of code LLMs, many popu-
lar evaluation benchmarks, such as HumanEval,
DS-1000, and MBPP, have emerged to measure
the performance of code LLMs with a particu-
lar focus on code generation tasks. However,
they are insufficient to cover the full range of ex-
pected capabilities of code LLMs, which span be-
yond code generation to answering diverse coding-
related questions. To fill this gap, we propose
InfiCoder-Eval, a large-scale freeform question-
answering (QA) benchmark for code, com-
prising 234 carefully selected high-quality Stack
Overflow questions that span across 15 program-
ming languages. To evaluate the response correct-
ness, InfiCoder-Eval supports four types of model-
free metrics and domain experts carefully choose
and concretize the criterion for each question. We
conduct a systematic evaluation for more than 80
code LLMs on InfiCoder-Eval, leading to a series
of insightful findings. Furthermore, our detailed
analyses showcase possible directions for further
improvement of code LLMs. InfiCoder-Eval is
fully open source at https://infi-coder.
github.io/inficoder-eval/ and contin-
uously maintaining and expanding to foster more
scientific and systematic practices for evaluating
code LLMs.
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Figure 1: InfiCoder-Eval benchmark overview. We construct
InfiCoder-Eval by filtering high-quality and diverse question posts
from Stack Overflow and annotating question-level evaluation cri-
teria with domain experts. With an efficient evaluation framework,
we evaluate over 80 code LLMs (most extensive for code LLMs to
our best knowledge) which leads to several insightful findings.

1. Introduction
In recent years, Large Language Models (LLMs) have been
revolutionizing the software development landscape (Hou
et al., 2023; Fan et al., 2023), where LLMs are show-
ing exceedingly strong and comprehensive capabilities in
comprehending, generating, debugging, and summarizing
code (Chen et al., 2021; Li et al., 2022). For example,
code LLMs-powered products like GitHub Copilot (Github,
2023) have reached millions of active users within just one
year of their launch.
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Question

I want to access the direct children of div with class 
"section". I know with css we can do: div.section > div. 
But how to do this using tailwindcss?

stackoverflow.com/questions/67119992

Highly-Voted 
Human Answers

Vote: 289

In tailwind 3.1, you can use arbitrary values 
to target child elements.
<div class="[&>*]:p-4">...</div> 
<div class="[&>p]:mt-0">...</div> 

I use these simple lines 
in tailwind.config.js
to give me child and child-
hover options.
plugins: [ 
  function ({ addVariant }) {
    addVariant('child', '& > *');
    addVariant('child-hover', '& > 
*:hover');
  }
],
…

Vote: 104

…

Goal Answer:

Match keyword
“&…>…”

GPT4 response:
Tailwind CSS is a utility-first CSS 
framework that provides low-level utility 
classes to build custom designs. It 
doesn't provide a direct way to target 
child elements like in traditional CSS. 

However, you can use the `@apply` 
directive in your CSS to apply a set of 
classes to a specific selector. Here's an 
example:

div.section > div {
@apply bg-red-500 text-white;

}
…

Result:
No match → No score

Figure 2: A challenging question paraphrased from Stack Over-
flow (post #67119992) where GPT-4 fails to answer.

Alongside the huge success of proprietary LLMs such
as GPT-3.5 / GPT-4 (OpenAI, 2023) and Gemini (Gem-
ini Team et al., 2023), the development of open-source code
LLMs1 (Nijkamp et al., 2023; Touvron et al., 2023b; Roziere
et al., 2023; Luo et al., 2023) has been advancing at an un-
precedented fast pace. As of January 2024, the Hugging
Face Open LLM Leaderboard (Beeching et al., 2023) has
cataloged over 2,000 submissions of such models.

Given the plethora of code LLMs available, the development
of reliable code benchmarks seems to lag behind. Bench-
marks for code LLMs typically focus on a specific task
or domain, often centering on code generation. For exam-
ple, the widely-used HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) purely focus on Python code
generation, and DS-1000 (Lai et al., 2023) concentrates on
Python code generation in the field of data science. Though
recent efforts have extended code generation benchmarks
to include more scenarios, languages (Muennighoff et al.,
2023), and tests (Liu et al., 2023a), these extensions often
evolve from an existing source (e.g., HumanEval Python
problems), thus still lacks diversity. As a result, there is
a misalignment between the model’s capabilities and eval-
uated ones which may result in an overemphasis on cod-
ing problem-solving in LLM evaluation. Moreover, strong
LLMs are saturating existing benchmarks, e.g., GPT-4 has
already achieved 88.4% Pass@1 score on HumanEval (Liu
et al., 2023a), while in real-world scenarios, GPT-4 can still
fail as exemplified in Figure 2. This raises the question:
Can we systematically and comprehensively evaluate code
LLMs’ abilities in challenging real-world usage scenarios?

To fulfill this urgent demand, we introduce InfiCoder-Eval, a
systematic benchmark for evaluating the free-form question-

1We define code LLMs as LLMs that show decent capabilities
in the code domain, no matter whether they are exclusively trained
with code data or not.

answering capabilities of code LLMs. The core principle
of InfiCoder-Eval is to maximize its representativeness of
how developers interact with and utilize such models in real-
world scenarios. To achieve this, InfiCoder-Eval comprises
234 questions2 that are carefully selected and proportionally
filtered from the natural high-quality question distribution
of Stack Overflow, without any constraints on topics, pro-
gramming languages, question types, or answer forms. As
a result, the curated 234 questions span 15 programming
languages and encompass five major areas: front-end, back-
end, data science and machine learning (DS&ML), mobile
and desktop, and information technology (IT) operations.

The expense of such diversity is the increase of evalua-
tion complexity. Unlike code generation or multiple-choice
benchmarks, which can be evaluated through standardized
methods like unit testing, there is no universal metric for
response correctness for free-form questions. On the other
hand, model-based evaluations such as those involving GPT-
4 are not only costly but also raise concerns about privacy
and bias. To mitigate the evaluation challenge, InfiCoder-
Eval includes an evaluation framework that integrates four
types of model-free metrics: keyword matching, blank fill-
ing, unit testing, and dialogue similarity. For each question,
we invite domain experts to paraphrase the prompt, select
the most appropriate metric, and write down the concrete
criteria using domain-specific knowledge, with highly-voted
answers from Stack Overflow as a reference. Consequently,
the entire benchmark can be evaluated directly in a sandbox
environment given any model responses.

As a novel and systematic benchmark disjoint with exist-
ing ones in terms of both forms and data sources, we be-
lieve that InfiCoder-Eval is an ideal tool to measure existing
code LLMs in an objective manner. Hence, we conduct a
systematic evaluation for over 80 code LLMs using the
InfiCoder-Eval framework — the most extensive evaluation
for code LLMs to our best knowledge. Our evaluation leads
to several insightful findings: (1) On InfiCoder-Eval, GPT-4
achieves a score of 70.64%, being far from perfect but still
far exceeding the most capable open-source models as of Jan
2024. On the other hand, GPT3.5 is surpassed by four open-
source models. (2) At similar model sizes, coding LLMs
are usually visibly stronger than general LLMs; fine-tuning
LLMs are usually visibly stronger than base LLMs. (3) The
performance differences between different model families
are huge, where one model could surpass another with less
than 1/10 parameters, highlighting the importance of train-
ing data and training techniques. (4) The scaling law is
empirically verified for open-source models with fewer than
50B parameters, but not for those with more. Per the pre-
diction of the empirical scaling law, code LLMs can match
GPT-4 capabilities at around 70B parameters while generic

2At similar magnitude as HumanEval which has 164 questions.
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Table 1: Comparison between InfiCoder-Eval and common existing benchmarks. Existing benchmarks weigh heavily on
code generation, unit-test-based evaluation, and a limited set of programming languages. InfiCoder-Eval processes a much
higher diversity to reflect real-world code LLMs’ usage scenarios and is far from saturation.

Benchmark Domain # Question Evaluation Data Source GPT-4 Score

HumanEval (Chen et al., 2021) Python Programming 164 Test Cases Hand-Written 88.4%
MBPP (Austin et al., 2021) Python Programming 974 Test Cases Hand-Written 81.1%

APPS (Hendrycks et al., 2021) Python Programming 10,000 Test Cases Competitions / (no report yet)
DS-1000 (Lai et al., 2023) Python Programming 1,000 Test Cases + Surface Form Constraints StackOverflow / (no report yet)

HumanEval+ (Liu et al., 2023b) Python Programming 164 Augmented Test Cases HumanEval 76.2%
HumanEvalPack (Muennighoff et al., 2023) Repair, Explain, Generation in 6 Languages 2,952 Test Cases HumanEval 47.8%/52.1%/78.3%

InfiCoder-Eval Free-Form Code Question 234 Keyword + Blank Filling + Stack 70.64%Answering in 18 Languages Test Cases + Text Similarity Overflow

LLMs need around 300B parameters. InfiCoder-Eval is
fully open source at https://infi-coder.github.
io/inficoder-eval/ and continuously3 expanding.

2. Benchmark Creation
The InfiCoder-Eval benchmark is created from a high-
quality subset of Stack Overflow questions up until June 14,
2023. In this section, we describe the data curation process
and the evaluation framework in detail.

2.1. Data Curation

Stack Overflow is a question-and-answer website for devel-
opers with more than 20 million registered users as of Jan
2024 (StackExchange, 2024). Since the website is a large
collection of natural and diverse coding questions from
real-world developers, we believe that questions from Stack
Overflow can effectively evaluate code LLM’s capabilities
in real-world usage scenarios.

The full Stack Overflow dataset contains 23.54 million ques-
tion posts and 34.68 million answer posts, all transformed
to Markdown format. Each question post has a total view
count. Each answer post is attached to a question and has a
vote count, where website visitors can either give a positive
or negative vote to the answer. The question creator can
choose one answer as the officially accepted answer.

As we aim to create a benchmark where the correctness
evaluation criteria are clear, we view the positively voted
answers as an important reference source. Hence, we choose
to keep only the questions that have at least three positively
voted answers and an officially accepted answer, which
turn out to be 1,090,238 questions. For these one million
questions, we choose to keep questions that are frequently
viewed and relatively new. To fulfill this criterion, we draw
a scatter plot of these ≈ 1 million questions, plotting the
number of days since their creation until June 14, 2023 (data
collection end-date) on the x-axis against the logarithm of
their view counts on the y-axis. As shown in Figure 3, we
empirically determine to keep questions that lie above the

3In other words, infinitely, after which the benchmark is named.

Figure 3: Scatter plot of filtered Stack Overflow questions.
We keep the questions above the orange line.

line connecting (0, 5) and (3000, 15.5), resulting in a subset
of 17,402 questions.

Utilizing the mandatory question tags of these questions,
we then manually construct a tag tree that covers the 200
most frequent tags, enabling us to identify the top program-
ming languages and areas for 14,330 questions. These ques-
tions are from 24 programming languages, with each lan-
guage being categorized into one primary area among the
five (front-end, back-end, data science and machine learn-
ing (DS&ML), mobile and desktop, and information tech-
nology (IT) operations). Lastly, we exclude 6 programming
languages that either describe data or are domain-specific:
JSON, regex, Markdown, YAML, CSV, and SQL. As a re-
sult, we compile 13,854 questions that serve as the initial
seed set.

2.2. Sampling and Calibration

Based on an user study of developers’ demand from our
organization, we allocate the tentative area quota to be 25%,
25%, 25%, 15%, and 10% for front-end, back-end, DS&ML,
mobile and desktop, and IT operations, respectively. In-
spired by HumanEval size and considering the labeling
labor cost, we set 200 questions as the target benchmark
size. Hence, the tentative size quotas by area are 50, 50, 50,
30, and 20 respectively. We then proportionally distribute
the area quotas to language quotas based on the frequency
of each language in the initial seed set. However, we ob-
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Table 2: Data sampling and calibration statistics for InfiCoder-
Eval. From the initial seed set, we uniformly sample and get the
inspecting set within each language bin. Domain experts then
select high-quality questions according to the language quota and
annotate the final benchmark.

Area Language
Initial Seed Set Tentative Final InfiCoder-Eval Benchmark

# Questions # Questions # Questions % Questions # Area % Area
Quota Quota Quota Quota Quota

Front-End
Javascript 4912 44 44 18.80%

63 26.92%CSS 87 10 10 4.27%
HTML 600 10 9 3.85%

Back-End

Java 930 18 17 7.26%

77 32.91%

C# 629 12 12 5.13%
PHP 462 10 9 3.85%
Go 117 10 9 3.85%

Ruby 71 10 10 4.27%
Rust 96 10 10 4.27%

C/C++ 287 10 10 4.27%

DS & ML Python 2779 47 47 20.09% 56 23.93%R 184 10 9 3.85%

Mobile &
Desktop

Dart 1562 19 19 8.12% 19 8.12%
Kotlin 383 10
Swift 551 10
VBA 16 9

IT Ops. Bash 188 21 19 8.12% 19 8.12%
Total 13854 270 234

serve that following this rule, certain languages such as
CSS, C/C++, and VBA end up with fewer than 10 ques-
tions, which is insufficient for providing a reliable language
sub-score, so, for these languages, we set their quotas to 10.

As a result, we get the tentative question quota for each lan-
guage as shown in Table 2, which sums up to 234 questions.
After determining the tentative question quota, we uniformly
sample from the initial seed set a roughly two times larger
pool for the domain expects to select and annotate.

2.3. Human Annotation

We recruited five domain experts to create the benchmark,
each in charge of one area. The annotation process is com-
posed of three steps:

• Step 1: Question Selection and Type Annotation. In
this step, the domain expert selects high-quality questions
from the inspecting set to include into the benchmark and
also annotates the question type to be one of the four:
code completion, code debugging, config and environ-
ment debugging, and knowledge question-answering.

• Step 2: Prompt Paraphrasing. In this step, the domain
expert paraphrases and simplifies the original question
body into succinct and explicit instructions. We include
this step for two main purposes: (1) Reduce domain gap.
From user-shared conversations collected from ShareGPT,
we observe that when interacting with code LLMs, users
tend to provide short and direct instructions like “Fix the
problem...” and “Debug the code...”. However, when post-
ing questions on Stack Overflow, users tend to be lengthy
and detailed with courtesy words. We ask the domain
experts to paraphrase the question to code LLM user’s
style without changing the semantics. (2) Prevent memo-
rization. Some code LLMs may be trained or fine-tuned

Table 3: InfiCoder-Eval statistics.
(a) Question type.
Question Type Ratio

Code Completion 30.37%
Knowledge Question-Answering 27.04%

Code Debugging 26.67%
Config & Environment Debugging 15.93%

(b) Metric type.
Metric Type Ratio

Keywords Matching 57.41%
Blank Filling 12.22%
Unit Testing 19.26%

Dialogue Similarity 11.85%

(c) Prompt token length with Code Llama tokenizer.

min 25% quantile median mean 75% quantile max

43 145.75 223 338.46 359.50 5047

with Stack Overflow data. Paraphrasing the questions can
help to mitigate the result advantages of these models.

• Step 3: Correctness Criterion Annotation. In this step,
the domain expert chooses one or multiple evaluation
metrics from our framework and annotates the detailed
correctness criterion (see Section 2.4) in a domain-specific
language. External files can be attached if needed, e.g.,
unit tests and reference answers.

To mitigate individual discrepancy, we introduce a few
checkpoints for domain experts to read others’ annotated
cases, discuss, and reach consensus for controversial cases.

Post-Annotation Correction and Filtering. After the 270
tentative questions were annotated, we ran an initial evalu-
ation of all these questions on over 30 code LLMs. From
the evaluation, we observe that for many questions whose
scores are computed based on dialogue similarity (see Sec-
tion 2.4), the similarity scores cannot differentiate model
responses much, where correct answers have many different
forms. Hence, we decided to remove seven questions ex-
hibiting this and all questions from Kotlin, Swift, and VBA
languages since more than half of their questions exhibit
this phenomenon. From the evaluation, We also identified a
few wrong criteria specifications and manually fixed them.
After this process, the final benchmark contains 234 ques-
tions spanning over 15 languages. Their detail statistics are
shown in Table 2.

2.4. Evaluation Framework and Score Computing

In response to the diversified questions, InfiCoder-Eval eval-
uation framework integrates four model-free metric types:
keywords matching, blank filling, unit testing, and dialogue
similarity. Domain experts choose one or multiple metric
types along with their corresponding weights and concretize.

• Keywords Matching. Though the responses can be in
diverse forms, for a significant portion of benchmark
questions, we find that the existence of some keywords
strongly determines the quality of the response. We allow
domain experts to write rules that match keywords and
regular expressions or construct recursive logical expres-
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sions on top of keyword-matching results. When multiple
keywords exist, each matching result can have its own
weight in the final score.

• Blank Filling. For some questions, it is challenging to
measure the correctness given the response uncertainty. In
this case, domain experts can instruct the model to answer
the question by following a given template and filling in
the blanks in the template. The blanks can correspond
to either natural language or code snippet. Then, similar
to keywords matching, each blank can match potential
keywords, regular expressions, or recursive logic expres-
sions built upon matching results. This metric type tests
not only the model’s QA ability but also its instruction-
following ability.

• Unit Testing. For code-intensive questions, we can follow
the traditional benchmarks to evaluate the response cor-
rectness by unit tests. For this type, domain experts add
detailed requirements to allow for unit-test-based evalu-
ation, such as requirements on generated function name,
input arguments, and output format. Besides the test, do-
main experts can further import the context setup script
and context cleanup script.

• Dialogue Similarity. For natural-language-intensive
questions, domain experts can extract and shorten the
reference answers from Stack Overflow, and then use the
ROUGE score (Lin, 2004) to evaluate the response sim-
ilarity with reference answers. The ROUGE score was
initially proposed and widely used in evaluating the qual-
ity of text summarization and machine translation. To
map the ROUGE score back to our benchmark scale, we
allow domain experts to tune the mapping interval and
scores within the interval are then linearly mapped to our
score scale.

The example questions and corresponding criteria are il-
lustrated in Figure 1. Detail statistics of metric type ratios,
question type ratios, and prompt length are shown in Table 3.

Score Computation. We treat each question equally with
one point each. Given 234 questions in the benchmark,
the full score is 234, and we by default report the percent-
age score (achieved score divided by 234) unless otherwise
noted. The one point for each question can be further de-
composed into a few scoring points within each question.
For example, a question may contain four keywords with
weights 2, 1, 1, and 1 each. Then, matching each keyword
can contribute to 0.4, 0.2, 0.2, and 0.2 points respectively to
the final score.

Difficulity Groupings. We systematically evaluated GPT-
4 and GPT-3.5-turbo on the benchmark following the eval-
uation protocol in Section 3.1, based on which we classify
the benchmark questions into five disjoint difficulty groups.

• Level 1 (93 questions): GPT-3.5-turbo can achieve a mean
score ≥ 0.5.

• Level 2 (55 questions): Among the rest questions, those
where GPT-4 can achieve a mean score ≥ 0.5.

• Level 3 (44 questions): Among the rest questions, those
where GPT-4 with sampling temperature 1.0 can achieve
a maximum score ≥ 0.5 among 10 trials.

• Level 4 (18 questions): Among the rest questions, those
GPT-4 with sampling temperature 0.2 can achieve a posi-
tive score among 100 trials.

• Level 5 (24 questions): The remaining questions.

The full result table (Table 7) shows each code LLM’s score
in each difficulty group. We observe that the scores roughly
decreases for higher difficulty levels, justifying our level
assignment. We can conduct further studies according to
the difficulty grouping.

Framework Implementation. We have implemented an
automated evaluation framework supporting all 234 bench-
mark questions with Python. Specifically, for blank-filling
evaluation, we implement longest common subsequence
matching via dynamic programming to capture the filled
blanks in the response. For unit-testing evaluation, we sup-
port the unit test execution for nine languages. Specifically,
the Javascript support is based on node.js (with Typescript
support); the C# support is based on the Mono framework.

2.5. Comparison with Existing Benchmarks

In Table 1, we compare our InfiCoder-Eval benchmark with
several existing benchmarks for code LLMs. As reflected
in the table, our benchmark strongly complements existing
ones by providing a much higher level of diversity from both
the question and evaluation aspects. Moreover, measured
by GPT-4 score, InfiCoder-Eval is not saturated yet. On the
other hand, the benchmark is limited in size due to the high
cost of correctness criteria labeling, and we are working on
continuously expanding the benchmark.

Discussion. During the benchmark creation process, we
did not explicitly introduce a data decontamination process.
The reason is that we believe it is not always feasible to
detect or prevent the same data source from being used
for training by existing or future models. If the same data
source (Stack Overflow) is used for training, achieving a full
comprehension level would theoretically be able to solve
this benchmark completely. Instead of viewing this as a
threat to benchmark validness, we view achieving a full com-
prehension or information retrieval ability on such a large
data source (over 20M questions) is itself great progress in
LLM research, which also, e.g., opens a venue for bench-
marking retrieval-augmented generation (RAG) for LLMs.
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3. Evaluation and Leaderboard
We systematically evaluate 88 proprietary models and open-
source models on the InfiCoder-Eval benchmark.

3.1. Evaluation Protocol

We adopt best@10 as the main evaluation metric, where
10 responses are sampled and evaluated for each question
and the best score per question is recorded and summed up.
Throughout the evaluation, we set sampling temperature
T = 0.2 and top p = 0.9.

We also conducted a comprehensive evaluation of other
generation parameters with GPT4, and find that for max-
imizing the performance under best@10, the best temper-
ature is T = 1.0 and the top p = 0.9, leading to a score
of 76.15% ± 0.21%. In particular, the temperature T af-
fects much and the effect of top p is minor. We decided to
stick to the original parameter T = 0.2 and p = 0.9 in the
main evaluation as this setting is more akin to the real-world
scenario where user generates once with low temperature.

We use the system prompt “You are a professional

assistant for programmers. By default,

questions and answers are in Markdown

format.” for normal questions, and the system
prompt “You are a professional assistant

for programmers. By default, questions and

answers are in Markdown format. You are

chatting with programmers, so please answer

as briefly as possible.” for questions evaluated
by the dialogue similarity metric to encourage short
answers. For generic models, we generate the prompt
with “{system prompt}\n{content prompt}” format;
for instruction-finetuned or chat models, we generate the
prompt with their own prompt templates.

For proprietary models, we focus on OpenAI models GPT-
4, GPT-3.5(-turbo), and Davinci-002 at the current stage.
The API version date is fixed to June 13, 2023. We did
not specify the max tokens to generate and found out that
the longest response generated by GPT-4 has 662 tokens
with Code Llama tokenizer. We repeat each evaluation three
times and report the error bars.

For open-source models, we evaluate on an 8xA100
server with our forked version of https://github.com/
bigcode-project/bigcode-evaluation-harness.
For models with over 30B parameters, due to the GPU
memory limit and efficiency concerns, we impose the
longest context constraint of 4,096 tokens and conduct the
experiment just once. Since there is only one question
whose GPT-4 context (prompt + GPT-4 response) can
exceed 4,096 tokens, we think this context constraint has
little effect, reducing the score by 0.37% at most. For
models within 30B parameters, since GPT-4 response has

Table 4: An aggregated version of InfiCoder-Eval leaderboard
where the best model within each model family is presented.
Evaluation protocol in Section 3.1. The “Size” column records
number of parameters. For MoE models, “total parameters
/ used parameters during inference” is recorded. Bar colors
stand for General Base , General Finetuned , Code Base , and
Code Finetuned models respectively. Full results in Table 6.

Family Best Model Name Size InfiCoder-Eval Score

GPT4 GPT4-0613 ? 70.64% ± 0.82%

DeepSeek Coder deepseek-coder-33b-instruct 33B 62.96%

Phind Phind-CodeLlama-34B-v2 34B 59.00%

DeepSeek LLM deepseek-llm-67b-chat 67B 57.41%

GPT3.5 GPT-3.5-turbo-0613 ? 56.47% ± 1.34%

Mixtral mixtral-8x7B-Instruct 46.7B / 12.9B 55.55%

Qwen Qwen-72B 72B 55.34%

Magicoder Magicoder-S-CL-7B 7B 52.71% ± 0.72%

WizardLM WizardCoder-Python-34B-V1.0 34B 52.59%

Code Llama CodeLlama-34b-Instruct 34B 50.45%

01.AI Yi-34B-Chat 34B 49.58%

Zephyr Zephyr 7B beta 7B 46.31% ± 1.11%

DeepSeek MoE deepseek-moe-16b-chat 16B / 2.8B 45.18% ± 1.65%

OctoPack OctoCoder 15.5B 44.55% ± 0.79%

Llama 2 Llama2-70B-Chat 70B 39.30%

Mistral Mistral-7B-Instruct-v0.1 7B 37.55% ± 1.10%

InternLM InternLM-Chat-20B 20B 37.41% ± 0.75%

DeepSeek LLM deepseek-llm-7b-chat 7B 36.75% ± 1.40%

Baichuan2 Baichuan2-13B-Chat 13B 34.40% ± 1.34%

Code Llama CodeLlama-7b-Python 7B 32.89% ± 0.45%

StarCoder StarCode+ 15.5B 30.67% ± 1.57%

CodeGen2.5 CodeGen2.5-7B-Instruct 7B 29.57% ± 1.53%

ChatGLM ChatGLM3-6B 6B 28.23% ± 0.58%

davinci davinci-002 ? 21.25% ± 1.17%

Phi Phi1.5 1.5B 20.56% ± 0.09%

CodeGeeX CodeGeeX2-6B 6B 19.88% ± 0.36%

CodeGen2 CodeGen2-16B 16B 16.97% ± 1.15%

IEITYuan Yuan2-51B-hf 51B 15.25%

CodeGen CodeGen-16B-multi 16B 13.62% ± 1.18%

at most 662 tokens, we set the max number of tokens to
generate to be min{1024, context length - prompt length},
providing some wiggle room. Meanwhile, we repeat the
evaluation three times for models within 30B parameters.

3.2. Leaderboard

We present the full results in Table 6 in the appendix and
an aggregated table in Table 4 where the best model among
each model family is digested. The results are also presented
as a scatter plot in Figure 4. In the figure, normal models are
shown as scatters with error bars, MoE models are shown as
horizontal segments with error ranges connecting the used
parameters during inference and total number of parameters,
and OpenAI proprietary models are shown as horizontal
lines with error ranges.

In both tables and the figure, we classify LLMs by gen-
eral/code and base/finetuned. The general LLMs are
claimed to have strong capabilities beyond code, e.g., in
various natural language tasks, while the code LLMs are ex-
clusively optimized for the code domain. The based LLMs
only went through the pertaining phase, while the finetuned
LLMs are claimed to have instruction-following capabilities
or are finetuned.

4. Analysis and Discussion
We summarize our findings below.
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General Base Model
General Finetuned Model

Code Finetuned Model
Code Base Model

CodeLlama-70b-Instruct
42.82%

deepseek-llm-67b-chat
57.41%

deepseek-coder-33b-
instruct 62.96%

Mixtral-8x7B-Instruct 55.55%

Qwen-72B 55.34%Phind-CodeLlama-
34B-v2 59.00%

deepseek-coder-1.3b-
instruct 41.32%

Qwen-1.8B-Chat 
26.84%

Phi1 14.28%
Phi2 16.74%

Phi1.5
20.56%

deepseek-moe-16b-chat 
45.18%

GPT4-0613 70.64%±0.82%
GPT3.5-turbo-0613 56.47%±1.34%
davinci-002 21.25%±1.17%

Figure 4: Scatter plot for all evaluated LLMs on InfiCoder-Eval. Normal models are shown as scatters with error bars, MoE models are
shown as horizontal segments with error ranges connecting the used parameters during inference and total number of parameters, and
OpenAI proprietary models are shown as horizontal lines with error ranges. Projected empirical scaling laws for both general and code
models are drawn. See detailed discussion in Section 4.

Best open-source models are competitive but still far
from GPT-4. As expected, GPT-4 achieves the highest score
70.64%. The runner score is achieved by an open-source
model, deepseek-coder-33b-instruct (DeepSeekAI, 2023),
with a 62.96% score. The result implies that: (1) GPT-4 is
still far from perfect. Noting that the full score of InfiCoder-
Eval is 100%, even the powerful GPT-4 is still far from
perfect, which is in contrast to the near 90% rate in Hu-
manEval. We inspect the score breakdown. For the two
most frequent metric types, keywords matching and unit
testing, GPT-4 achieves similar scores 66.61% and 76.00%
respectively. For blank filling, the score is relatively lower at
58.08%. These scores may imply that GPT-4 may still lack
generic ability in answering diversified real-world questions
related to code. When being instructed to follow a given
template to answer (blank filling), due to the more strict re-
quirement and narrower solution space, such ability shortage
becomes more pronounced. (2) There is still a visible gap
between open-source models and GPT-4. The gap between
deepseek-coder-33b-instruct and GPT-4 is roughly 8 points.
Hence, GPT-4 is still the best LLM to our best knowledge
in InfiCoder-Eval. However, noticing that GPT-3.5-turbo
achieves 56.47%, open-source models are now reliably bet-
ter than GPT-3.5-turbo, lying between GPT-3.5-turbo and

GPT-4 (slightly closer to GPT-3.5-turbo) end.

Among open-source models, different models have very
different performances. Figure 4 systematically visualizes
the performance of different open-source models at diverse
scales. Although there is a general tendency that larger
models achieve higher scores, the scores among different
models at the similar scale differ largely. For example, at the
scale 7B, the best-performing model is at around 55%, pretty
close to GPT3.5, while the low-performing model stays at
around 15%. Moreover, consider the best model at scale
1.3B, deepseek-coder-1.3b-instruct, which achieves 41.32%,
it even surpasses a few models at the scale 70B or 100B.
This result implies that though scaling matters, the training
techniques and training data are equally important or even
more, helping to reduce the required scale for achieving
certain score by more than 10× size.

Instruction-finetuning is important for QA. Among mod-
els of similar scales and the same family, we find that the
best-performing ones almost always include an instruction-
finetuning phase, such as deepseek-llm-67b-chat, deepseek-
coder-33b-instruct, CodeLlama-34B-Instruct, and Qwen-
18B-Chat. In contrast, the pretraining models, such as
davinci-002 and phi models, usually perform poorly despite
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Table 5: The full evaluation of Code Llama (Roziere et al.,
2023) models showcases intense single-language finetuning
may hurt free-form QA abiltiy, despite achieving higher Hu-
manEval scores (compare “Base” and “Python” columns).

Benchmark Base Python Instruct

7B HumanEval 33.5% 38.4% (+4.9%) 34.8% (+1.3%)
InfiCoder-Eval 37.62%±1.28% 32.89%±0.45% (−4.73%) 35.15%±1.28% (−2.47%)

13B HumanEval 36.0% 43.3% (+7.3%) 42.7% (+6.7%)
InfiCoder-Eval 41.66%±0.84% 41.31%±0.90% (−0.35%) 46.37%±1.26% (+4.71%)

34B HumanEval 48.8% 53.7% (+4.9%) 41.5% (−7.3%)
InfiCoder-Eval 47.36% 43.13% (−4.23%) 50.45% (+3.09%)

70B HumanEval 48.8% 53.7% (+4.9%) 41.5% (−7.3%)
InfiCoder-Eval 40.60% 40.29% (−0.31%) 42.82% (+2.22%)

their capacities and strong performances in code generation
benchmarks. This implies that instruction-finetuning is crit-
ical for equipping the models with QA ability in the code
domain.

Some models may focus too much on code generation,
especially the small ones. In Table 6, we observe that
for large models (>30B) and top entries, the InfiCoder-
Eval scores and HumanEval pass1 scores coincide well.
However, for smaller models, the score tendencies start
to diverge, where some models are relatively stronger
in InfiCoder-Eval (Zypher-7b-β) and more are relatively
stronger in HumanEval (OctoCoder, Qwen-14B-Chat, phi-
1.5, CodeGeeX2). This phenomenon may imply that a
few models may focus heavily on simpler code generation
benchmarks while ignoring the performance in generic code
scenarios. Our InfiCoder-Eval benchmark, as a free-form
QA benchmark in the code domain, is a great tool for de-
tecting and evaluating such imbalance in model ability.

Furthermore, we conduct a complete evaluation for all Code
Llama models. As shown in Table 5, we found finetuning on
Python data improves HumanEval scores but consistently
hurts InfiCoder-Eval scores, while instruction finetuning
usually improves InfiCoder-Eval scores but may hurt Hu-
manEval scores.

Code models and general models may exhibit different
scaling laws, and open-source models scale well only
within 50B. In Figure 4, we connect the top-performing
code and general models respectively to predict within
which size the models are on par with the strongest propri-
etary model, GPT-4. As we can observe, for general models
that need to cover a broad range of capabilities, the model
size may need to be around 300B (note the logarithm scale
of the x-axis); while for code models, the model size may
only need to be around 70B which is much closer. Hence,
for strong code capabilities for developers’ use, maybe train-
ing exclusively or heavily in the code domain is a better
choice compared to building a general model.

Another important finding is that among all open-source
models benchmarked so far, models larger than 50B do
not perform significantly better than those within 50B. For
example, among general models, deepseek-llm-67b-chat
achieves 57.41%, which is just 2% higher than Mixtral-

8x7B-Instruct which is within 50B. More astonishingly,
CodeLlama-70b models are even poorer than CodeLlama-
34b counterparts. This is a sharp contrast to the scaling
pace within 50B, where models have significantly better
performance from 1B to 3B, from 3B to 7B, ..., until 50B.
This may imply that there may be some non-trivial barrier
when scaling the model beyond 50B, or the scaling law may
change at such a large scale.

5. Related Work
Large language models (Vaswani et al., 2017; Devlin et al.,
2018; Brown et al., 2020) are revolutionizing people’s lives.
Especially, in the coding domain, code LLMs (Chen et al.,
2021; Li et al., 2022) are shown to be capable of completing
a wide range of tasks such as code generation, debugging,
and question-answering. Recently, code LLMs are booming
with new models, including both proprietary ones (Github,
2023; OpenAI, 2023) and open-source ones (Beeching et al.,
2023; Nijkamp et al., 2023; Touvron et al., 2023a;b; Li et al.,
2023; Luo et al., 2023; Roziere et al., 2023), are released
almost every month.

At the same time, benchmarks for code LLMs are devel-
oping, though at a relatively slower pace. Common bench-
marks (Hendrycks et al., 2021; Austin et al., 2021; Chen
et al., 2021) focus on code generation and unit-test-based
evaluation. Recent efforts augment these benchmarks by
language translation (Athiwaratkun et al., 2023; Zheng et al.,
2023), test augmentation (Liu et al., 2023b), and task gen-
eralization (Muennighoff et al., 2023). In contrast, our
InfiCoder-Eval benchmark is built for evaluating free-form
question-answering ability in the code domain which is es-
sential for code LLMs as developers’ assistants. InfiCoder-
Eval benchmark is a strong complement of existing bench-
marks.

6. Conclusion and Future Work
We proposed InfiCoder-Eval, a systematic benchmark for
evaluating the question-answering ability of large language
models for code. InfiCoder-Eval comprises 234 high-quality
questions from Stack Overflow and supports automatic ex-
ecution and evaluation of model responses with four types
of model-free metrics such as unit testing and keywords
matching. A comprehensive evaluation of over 80 code
LLMs reveals several interesting findings and takeaways.
The benchmark and evaluation framework will be made
publicly available, and we will continue to maintain and
expand this benchmark.

Impact Statements
In this work, we propose an evaluation framework InfiCoder-
Eval for code LLMs to systematically evaluate code LLM’s
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capabilities in answering and assisting developers’ ques-
tions. We anticipate that the framework may be widely
adopted and used to measure future code LLM capabili-
ties. Hence, we would like to address that the benchmark
is mainly designed to solely focus on evaluating model
capabilities. We did not consider model alignment and trust-
worthiness (e.g., hallucinations, privacy, etc) evaluation in
the evaluation criterion. As a result, the evaluation may
not fully reflect LLM’s helpfulness, and we strongly sug-
gest practitioners to evaluate LLMs using systematic criteria
integrating multiple benchmarks to cover alignment aspects.
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Table 6: Overall results of all benchmarked LLMs. Evaluation protocol in Section 3.1. HumanEval Scores are digested from
(Liu et al., 2023a). Bar colors stand for General Base , General Finetuned , Code Base , and Code Finetuned models
respectively.

No Family Model Name Domain Type Size Context Length InfiCoder-Eval Score HumanEval Score

1 GPT4 GPT4-0613 General Finetuned ? 8192 70.64% ± 0.82% 88.4
2 GPT4 GPT4-turbo-1106 General Finetuned ? 8192 68.42% ± 0.38% 85.4
3 DeepSeek Coder deepseek-coder-33b-instruct Code Finetuned 33B 16384 62.96% 80.02
4 Phind Phind-CodeLlama-34B-v2 Code Finetuned 34B 4096 59.00% 71.95
5 Phind Phind-CodeLlama-34B-v1 Code Finetuned 34B 4096 58.47% 65.85
6 DeepSeek LLM deepseek-llm-67b-chat General Finetuned 67B 4096 57.41% /
7 GPT3.5 GPT-3.5-turbo-0613 General Finetuned ? 4096 56.47% ± 1.34% 72.6
8 Mixtral mixtral-8x7B-Instruct General Finetuned 46.7B / 12.9B 32768 55.55% 37.8
9 Qwen Qwen-72B General Base 72B 32768 55.34% /

10 DeepSeek Coder deepseek-coder-6.7b-instruct Code Finetuned 6.7B 16384 53.25% ± 0.40% 80.22
11 Qwen Qwen-72B-Chat General Finetuned 72B 32768 52.97% /
12 Magicoder Magicoder-S-CL-7B Code Finetuned 7B 16384 52.71% ± 0.72% 70.7
13 WizardLM WizardCoder-Python-34B-V1.0 Code Finetuned 34B 16384 52.59% 70.73
14 Phind Phind-CodeLlama-34B-Python-v1 Code Finetuned 34B 4096 52.17% 70.22
15 Magicoder Magicoder-S-DS-6.7B Code Finetuned 6.7B 16384 51.46% ± 1.09% 76.8
16 Code Llama CodeLlama-34b-Instruct Code Finetuned 34B 16384 50.45% 50.79
17 01.AI Yi-34B-Chat General Finetuned 34B 4096 49.58% /
18 WizardLM WizardCoder-Python-7B-V1.0 Code Finetuned 7B 16384 49.10% ± 1.59% 48.2
19 WizardLM WizardCoder-Python-13B-V1.0 Code Finetuned 13B 16384 48.99% ± 0.92% 62.19
20 Code Llama CodeLlama-34b Code Base 34B 16384 47.36% 45.11
21 Code Llama CodeLlama-13b-Instruct Code Finetuned 13B 16384 46.37% ± 1.26% 50.6
22 Zephyr Zephyr 7B beta General Finetuned 7B 32768 46.31% ± 1.11% /
23 DeepSeek MoE deepseek-moe-16b-chat General Finetuned 16B / 2.8B 16384 45.18% ± 1.65% /
24 OctoPack OctoCoder Code Finetuned 15.5B 8192 44.55% ± 0.79% 45.3
25 Qwen Qwen-14B General Base 14B 8192 43.69% ± 1.09% /
26 Qwen Qwen-14B-Chat General Finetuned 14B 8192 43.49% ± 0.63% 40.9
27 Magicoder Magicoder-DS-6.7B Code Finetuned 6.7B 16384 43.47% ± 0.21% /
28 Code Llama CodeLlama-34b-Python Code Base 34B 16384 43.13% 53.29
29 Code Llama CodeLlama-70b-Instruct Code Finetuned 70B 4096 42.82% 75.6
30 Magicoder Magicoder-CL-7B Code Finetuned 7B 16384 41.71% ± 0.76% /
31 Code Llama CodeLlama-13b Code Base 13B 16384 41.66% ± 0.84% 35.07
32 DeepSeek Coder deepseek-coder-1.3b-instruct Code Finetuned 1.3B 16384 41.32% ± 1.12% 64.6
33 Code Llama CodeLlama-13b-Python Code Base 13B 16384 41.31% ± 0.90% 42.89
34 WizardLM WizardCoder-15B-V1.0 Code Finetuned 15B 2048 41.01% ± 0.22% 58.12
35 Code Llama CodeLlama-70b Code Base 70B 4096 40.60% 55.5
36 Code Llama CodeLlama-70b-Python Code Base 70B 4096 40.29% 55.49
37 OctoPack OctoGeeX Code Finetuned 6B 8192 40.14% ± 1.55% 42.28
38 DeepSeek LLM deepseek-llm-67b-base General Base 67B 4096 39.87% 42.7
39 Llama 2 Llama2-70B-Chat General Finetuned 70B 4096 39.30% /
40 DeepSeek Coder deepseek-coder-33b-base Code Base 33B 16384 38.75% 52.45
41 01.AI Yi-6B-Chat General Finetuned 6B 4096 38.14% ± 0.58% /
42 Llama 2 Llama2-70B General Base 70B 4096 37.69% 28.7
43 Code Llama CodeLlama-7b Code Base 7B 16384 37.62% ± 1.28% 29.98
44 Mistral Mistral-7B-Instruct-v0.1 General Finetuned 7B 32768 37.55% ± 1.10% /
45 InternLM InternLM-Chat-20B General Finetuned 20B 16384 37.41% ± 0.75% /
46 Qwen Qwen-7B-Chat General Finetuned 7B 32768 37.36% ± 1.29% 36.0
47 DeepSeek LLM deepseek-llm-7b-chat General Finetuned 7B 4096 36.75% ± 1.40% /
48 Llama 2 Llama2-7B-Chat General Finetuned 7B 4096 36.14% ± 1.05% /
49 WizardLM WizardCoder-3B-V1.0 Code Finetuned 3B 2048 35.61% ± 0.42% 32.92
50 Code Llama CodeLlama-7b-Instruct Code Finetuned 7B 16384 35.15% ± 1.02% 45.65
51 InternLM InternLM-Chat-7B General Finetuned 7B 8192 34.86% ± 0.90% /
52 Baichuan2 Baichuan2-13B-Chat General Finetuned 13B 4096 34.40% ± 1.34% 19.5
53 DeepSeek Coder deepseek-coder-6.7b-base Code Base 6.7B 16384 33.66% ± 1.24% 45.83
54 Code Llama CodeLlama-7b-Python Code Base 7B 16384 32.89% ± 0.45% 40.48
55 Llama 2 Llama2-13B-Chat General Finetuned 13B 4096 32.29% ± 1.66% /
56 WizardLM WizardCoder-1B-V1.0 Code Finetuned 1B 2048 31.94% ± 0.70% 23.17
57 Qwen Qwen-7B General Base 7B 32768 31.69% ± 0.29% /
58 StarCoder StarCode+ Code Base 15.5B 8192 30.67% ± 1.57% /
59 StarCoder StarCoder Code Base 15.5B 8192 30.66% ± 0.69% 33.57
60 CodeGen2.5 CodeGen2.5-7B-Instruct Code Finetuned 7B 2048 29.57% ± 1.53% /
61 InternLM InternLM-20B General Base 20B 16384 29.41% ± 0.76% /
62 DeepSeek Coder deepseek-coder-5.7bmqa-base Code Base 5.7B 16384 28.92% ± 1.12% /
63 ChatGLM ChatGLM3-6B General Finetuned 6B 8192 28.23% ± 0.58% 52.4
64 Baichuan2 Baichuan2-7B-Chat General Finetuned 7B 4096 27.53% ± 1.07% 17.7
65 Qwen Qwen-1.8B-Chat General Finetuned 1.8B 32768 26.84% ± 1.08% /
66 DeepSeek MoE deepseek-moe-16b-base General Base 16B / 2.8B 16384 26.65% ± 0.97% /
67 Baichuan2 Baichuan2-13B-Base General Base 13B 4096 26.32% ± 1.23% /
68 DeepSeek LLM deepseek-llm-7b-base General Base 7B 4096 25.34% ± 1.08% 26.2
69 Llama 2 Llama2-13B General Base 13B 4096 24.50% ± 0.73% /
70 Baichuan2 Baichuan2-7B-Base General Base 7B 4096 23.50% ± 1.56% /
71 DeepSeek Coder deepseek-coder-1.3b-base Code Base 1.3B 16384 23.17% ± 1.47% 32.13
72 Qwen Qwen-1.8B General Base 1.8B 32768 23.12% ± 1.13% /
73 Mistral Mistral-7B-v0.1 General Base 7B 32768 22.72% ± 1.51% 28.7
74 Llama 2 Llama2-7B General Base 7B 4096 22.35% ± 1.70% 14.6
75 01.AI Yi-34B General Base 34B 4096 22.01% /
76 davinci davinci-002 General Base ? 16384 21.25% ± 1.17% /
77 Mixtral mixtral-8x7B General Base 46.7B / 12.9B 32768 21.21% /
78 Phi Phi1.5 General Base 1.5B 2048 20.56% ± 0.09% /
79 01.AI Yi-6B General Base 6B 4096 19.93% ± 1.24% /
80 CodeGeeX CodeGeeX2-6B Code Base 6B 8192 19.88% ± 0.36% 33.49
81 CodeGen2 CodeGen2-16B Code Base 16B 2048 16.97% ± 1.15% /
82 Phi Phi2 General Base 2.7B 2048 16.74% ± 0.64% 48.2
83 InternLM InternLM-7B General Base 7B 8192 16.26% ± 2.21% /
84 IEITYuan Yuan2-51B-hf General Base 51B 4096 15.25% /
85 Phi Phi1 General Base 1.3B 2048 14.28% ± 0.99% 51.22
86 CodeGen CodeGen-16B-multi Code Base 16B 2048 13.62% ± 1.18% 19.26
87 IEITYuan Yuan2-102B-hf General Base 102B 4096 10.48% /
88 IEITYuan Yuan2-2B-hf General Base 2B 8192 7.28% ± 1.01% /
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InfiCoder-Eval: Systematically Evaluating the Question-Answering Capabilities of Code Large Language Models

Table 7: Scores of all benchmarked LLMs by difficulty levels, problem types, and evaluation metrics.

Overall Difficulty Levels Problem Types Evaluation Metrics
No Family Model Name InfiCoder-Eval Code Code Knowledge Config & Env Keyword Unit Blank Text

Score Level 1 Level 2 Level 3 Level 4 Level 5 Completion Debugging QA Debugging Matching Testing Filling Similarity

max 70.64% 93.08% 92.48% 54.16% 31.91% 17.36% 75.23% 69.74% 68.55% 66.63% 66.61% 77.00% 58.08% 84.27%
mean 36.78% 55.88% 36.87% 24.32% 9.91% 5.50% 37.76% 35.41% 40.78% 31.85% 37.20% 36.30% 19.09% 22.78%
min 7.28% 9.11% 7.77% 5.56% 0.99% 0.00% 4.01% 8.29% 6.71% 4.76% 8.41% 3.33% 0.00% 0.00%

1 GPT4 GPT4-0613 70.64% 92.31% 92.48% 51.90% 31.91% 0.00% 75.23% 69.74% 68.55% 66.63% 66.61% 76.00% 58.08% 84.27%
2 GPT4 GPT4-turbo-1106 68.42% 89.90% 78.57% 54.16% 30.93% 16.20% 74.82% 65.36% 67.47% 62.98% 64.98% 76.40% 53.91% 52.85%
3 DeepSeek Coder deepseek-coder-33b-instruct 62.96% 87.58% 72.02% 44.12% 15.83% 16.67% 71.26% 57.14% 63.14% 56.81% 59.01% 77.00% 30.00% 36.09%
4 Phind Phind-CodeLlama-34B-v2 59.00% 83.67% 55.57% 53.12% 15.09% 14.93% 58.24% 58.30% 63.60% 55.33% 59.63% 58.40% 35.26% 24.19%
5 Phind Phind-CodeLlama-34B-v1 58.47% 81.38% 63.85% 47.05% 22.63% 5.21% 66.13% 56.94% 56.79% 49.48% 55.71% 66.00% 38.78% 35.39%
6 DeepSeek LLM deepseek-llm-67b-chat 57.41% 82.96% 63.03% 39.09% 22.60% 5.21% 61.42% 52.73% 58.72% 55.63% 53.14% 63.00% 51.41% 36.68%
7 GPT3.5 GPT-3.5-turbo-0613 56.47% 93.08% 49.77% 31.36% 14.30% 7.64% 64.91% 48.50% 59.47% 49.64% 51.28% 70.07% 40.90% 40.13%
8 Mixtral mixtral-8x7B-Instruct 55.55% 82.19% 56.72% 31.53% 24.00% 17.36% 54.01% 51.57% 63.69% 53.59% 56.14% 50.40% 35.58% 61.75%
9 Qwen Qwen-72B 55.34% 81.98% 57.40% 41.61% 13.24% 4.17% 61.06% 53.16% 58.79% 44.03% 50.43% 64.00% 45.96% 36.41%

10 DeepSeek Coder deepseek-coder-6.7b-instruct 53.25% 77.88% 56.30% 35.18% 18.89% 9.72% 65.95% 46.44% 52.46% 42.12% 48.24% 70.40% 26.90% 23.48%
11 Qwen Qwen-72B-Chat 52.97% 82.44% 47.00% 36.09% 18.34% 9.38% 58.67% 45.81% 60.12% 44.31% 49.26% 59.00% 43.08% 33.95%
12 Magicoder Magicoder-S-CL-7B 52.71% 77.97% 50.42% 40.20% 13.45% 12.50% 51.39% 51.98% 56.97% 50.58% 53.28% 56.67% 21.41% 26.97%
13 WizardLM WizardCoder-Python-34B-V1.0 52.59% 78.51% 52.50% 34.25% 20.05% 10.42% 60.32% 46.39% 55.86% 44.01% 48.73% 64.00% 37.56% 24.72%
14 Phind Phind-CodeLlama-34B-Python-v1 52.17% 80.54% 48.44% 42.58% 8.57% 1.04% 54.41% 52.34% 57.11% 41.47% 51.04% 57.80% 27.18% 39.76%
15 Magicoder Magicoder-S-DS-6.7B 51.46% 78.93% 51.02% 28.91% 25.93% 6.48% 62.54% 46.45% 55.74% 33.84% 45.64% 69.13% 31.45% 27.86%
16 Code Llama CodeLlama-34b-Instruct 50.45% 72.60% 55.07% 33.16% 18.43% 9.72% 51.71% 48.37% 61.36% 37.04% 48.14% 51.20% 47.76% 28.55%
17 01.AI Yi-34B-Chat 49.58% 76.81% 47.15% 29.32% 26.39% 4.17% 44.10% 44.75% 62.29% 49.84% 53.14% 35.40% 36.15% 33.07%
18 WizardLM WizardCoder-Python-7B-V1.0 49.10% 76.42% 48.08% 29.09% 12.50% 9.72% 58.60% 41.63% 50.67% 41.49% 46.38% 59.40% 25.30% 23.00%
19 WizardLM WizardCoder-Python-13B-V1.0 48.99% 76.21% 46.76% 34.19% 16.17% 0.35% 52.69% 48.29% 50.67% 41.32% 48.71% 53.73% 20.45% 29.61%
20 Code Llama CodeLlama-34b 47.36% 72.07% 43.34% 29.32% 21.20% 13.54% 53.74% 50.09% 51.52% 26.59% 43.18% 57.33% 37.37% 24.85%
21 Code Llama CodeLlama-13b-Instruct 46.37% 69.07% 45.99% 34.37% 11.42% 7.52% 48.65% 45.18% 49.67% 39.83% 47.71% 50.47% 20.90% 12.45%
22 Zephyr Zephyr 7B beta 46.31% 68.41% 49.99% 31.11% 14.99% 3.59% 44.26% 44.86% 54.89% 40.85% 49.28% 35.07% 27.91% 27.66%
23 DeepSeek MoE deepseek-moe-16b-chat 45.18% 68.15% 46.72% 27.55% 10.17% 11.23% 47.19% 46.54% 45.58% 39.09% 45.71% 44.73% 25.85% 20.70%
24 OctoPack OctoCoder 44.55% 68.19% 41.61% 29.39% 12.96% 11.11% 46.56% 37.62% 53.57% 39.56% 44.18% 47.07% 20.09% 39.20%
25 Qwen Qwen-14B 43.69% 67.61% 47.64% 21.87% 9.63% 7.52% 44.59% 42.15% 47.09% 39.99% 41.61% 44.40% 34.19% 28.21%
26 Qwen Qwen-14B-Chat 43.49% 68.91% 36.25% 27.73% 10.28% 15.39% 45.39% 42.12% 46.33% 38.48% 41.87% 42.73% 36.18% 34.79%
27 Magicoder Magicoder-DS-6.7B 43.47% 67.04% 48.33% 23.11% 13.64% 0.69% 52.73% 40.42% 48.14% 25.61% 38.37% 56.73% 29.81% 38.07%
28 Code Llama CodeLlama-34b-Python 43.13% 66.02% 40.76% 36.06% 6.94% 0.00% 50.14% 40.48% 43.64% 34.13% 40.40% 51.00% 27.63% 16.67%
29 Code Llama CodeLlama-70b-Instruct 42.82% 59.08% 44.14% 38.48% 12.22% 7.64% 38.20% 44.99% 46.87% 42.38% 48.34% 32.00% 16.09% 5.62%
30 Magicoder Magicoder-CL-7B 41.71% 70.38% 36.48% 23.06% 10.33% 0.35% 49.26% 35.11% 45.41% 33.47% 37.85% 52.27% 19.91% 39.21%
31 Code Llama CodeLlama-13b 41.66% 62.77% 40.40% 31.11% 7.97% 7.41% 38.17% 44.56% 43.00% 41.72% 45.44% 34.80% 14.79% 2.47%
32 DeepSeek Coder deepseek-coder-1.3b-instruct 41.32% 65.48% 41.42% 25.48% 6.30% 2.78% 41.91% 42.56% 42.88% 36.38% 41.80% 42.20% 16.52% 24.32%
33 Code Llama CodeLlama-13b-Python 41.31% 62.93% 40.80% 28.61% 10.37% 5.21% 49.95% 44.60% 36.68% 27.22% 40.58% 51.07% 11.92% 13.64%
34 WizardLM WizardCoder-15B-V1.0 41.01% 66.19% 40.34% 21.72% 12.42% 1.74% 44.80% 34.54% 47.68% 35.29% 38.43% 47.60% 22.31% 35.01%
35 Code Llama CodeLlama-70b 40.60% 60.59% 37.42% 35.68% 7.59% 4.17% 47.18% 39.10% 39.09% 33.21% 40.54% 45.00% 19.23% 8.56%
36 Code Llama CodeLlama-70b-Python 40.29% 59.14% 36.07% 41.06% 7.59% 0.00% 42.03% 43.04% 40.76% 32.46% 41.78% 41.00% 10.96% 19.50%
37 OctoPack OctoGeeX 40.14% 62.54% 37.84% 26.39% 15.67% 2.20% 42.24% 33.23% 46.02% 39.10% 39.85% 39.96% 20.90% 31.11%
38 DeepSeek LLM deepseek-llm-67b-base 39.87% 57.15% 48.73% 24.32% 9.17% 4.17% 35.50% 43.17% 46.15% 34.40% 39.98% 36.00% 30.00% 24.46%
39 Llama 2 Llama2-70B-Chat 39.30% 56.95% 38.02% 33.71% 7.96% 7.64% 35.65% 42.87% 42.56% 36.11% 40.89% 34.40% 22.44% 28.14%
40 DeepSeek Coder deepseek-coder-33b-base 38.75% 56.73% 44.55% 19.85% 14.95% 8.33% 33.36% 43.73% 46.06% 31.23% 43.99% 25.50% 14.49% 28.02%
41 01.AI Yi-6B-Chat 38.14% 52.73% 38.20% 34.37% 12.53% 7.64% 33.36% 39.81% 42.54% 38.33% 43.26% 23.83% 15.32% 15.69%
42 Llama 2 Llama2-70B 37.69% 51.51% 42.58% 28.48% 10.19% 10.42% 36.26% 42.99% 37.12% 32.98% 39.52% 28.00% 30.45% 0.00%
43 Code Llama CodeLlama-7b 37.62% 59.81% 38.25% 19.37% 9.32% 4.86% 42.19% 38.60% 37.37% 28.41% 37.87% 41.80% 15.13% 0.00%
44 Mistral Mistral-7B-Instruct-v0.1 37.55% 56.31% 41.34% 24.07% 7.47% 3.47% 39.74% 30.74% 47.10% 31.40% 34.17% 39.80% 34.44% 29.90%
45 InternLM InternLM-Chat-20B 37.41% 59.98% 32.30% 20.40% 18.44% 7.06% 45.38% 34.67% 34.25% 31.63% 34.51% 46.20% 18.18% 23.51%
46 Qwen Qwen-7B-Chat 37.36% 60.23% 36.20% 19.77% 7.65% 5.90% 43.44% 32.38% 38.22% 32.98% 34.06% 43.07% 29.02% 30.11%
47 DeepSeek LLM deepseek-llm-7b-chat 36.75% 55.46% 39.38% 22.94% 6.30% 6.37% 34.08% 29.75% 46.76% 38.83% 39.15% 30.13% 15.90% 35.98%
48 Llama 2 Llama2-7B-Chat 36.14% 54.17% 35.35% 24.72% 9.44% 9.03% 35.53% 33.29% 39.16% 37.51% 37.64% 28.50% 21.35% 27.76%
49 WizardLM WizardCoder-3B-V1.0 35.61% 57.44% 35.61% 15.23% 11.30% 6.60% 39.25% 32.08% 41.34% 26.96% 35.83% 35.40% 19.25% 26.50%
50 Code Llama CodeLlama-7b-Instruct 35.15% 53.69% 35.79% 24.82% 7.59% 1.39% 36.46% 37.13% 35.00% 30.05% 35.97% 34.87% 15.77% 13.83%
51 InternLM InternLM-Chat-7B 34.86% 55.80% 32.39% 20.76% 12.70% 1.85% 35.31% 34.30% 39.75% 28.52% 35.23% 34.57% 17.65% 16.86%
52 Baichuan2 Baichuan2-13B-Chat 34.40% 53.77% 27.69% 24.19% 6.85% 14.12% 37.03% 35.93% 36.39% 24.88% 34.62% 31.07% 22.63% 18.28%
53 DeepSeek Coder deepseek-coder-6.7b-base 33.66% 53.26% 37.95% 14.02% 8.56% 2.78% 36.56% 32.40% 37.83% 25.00% 35.17% 33.47% 11.92% 8.81%
54 Code Llama CodeLlama-7b-Python 32.89% 51.02% 28.69% 24.32% 7.59% 6.94% 30.38% 38.34% 32.37% 29.81% 35.27% 30.40% 8.97% 11.31%
55 Llama 2 Llama2-13B-Chat 32.29% 51.19% 29.18% 22.80% 7.59% 2.08% 27.51% 28.98% 42.86% 31.84% 37.07% 21.07% 9.17% 19.77%
56 WizardLM WizardCoder-1B-V1.0 31.94% 46.90% 30.00% 27.37% 1.36% 9.72% 28.75% 30.77% 36.80% 32.94% 34.50% 25.00% 16.65% 20.69%
57 Qwen Qwen-7B 31.69% 52.65% 32.18% 15.18% 2.10% 1.85% 33.78% 30.71% 36.78% 22.83% 31.09% 34.07% 15.71% 17.12%
58 StarCoder StarCode+ 30.67% 50.99% 29.51% 14.29% 4.01% 4.63% 31.83% 29.19% 36.04% 23.84% 33.63% 27.47% 8.72% 2.08%
59 StarCoder StarCoder 30.66% 45.97% 30.30% 23.18% 5.93% 4.40% 24.67% 29.21% 41.06% 29.78% 36.68% 16.33% 13.27% 0.00%
60 CodeGen2.5 CodeGen2.5-7B-Instruct 29.57% 50.36% 22.07% 20.25% 6.67% 0.46% 28.76% 25.96% 37.70% 25.77% 32.35% 24.76% 11.54% 0.00%
61 InternLM InternLM-20B 29.41% 49.21% 25.17% 18.01% 4.81% 1.74% 28.48% 24.69% 35.00% 30.79% 29.58% 26.23% 14.62% 37.60%
62 DeepSeek Coder deepseek-coder-5.7bmqa-base 28.92% 45.62% 33.11% 11.67% 4.54% 4.51% 26.82% 27.41% 37.87% 23.17% 30.64% 24.93% 10.64% 19.54%
63 ChatGLM ChatGLM3-6B 28.23% 42.48% 26.87% 20.78% 6.64% 6.02% 30.57% 21.80% 29.69% 31.85% 28.92% 28.23% 8.25% 27.01%
64 Baichuan2 Baichuan2-7B-Chat 27.53% 42.14% 28.83% 16.84% 3.55% 5.56% 29.02% 26.36% 32.91% 19.63% 28.30% 27.40% 3.65% 49.66%
65 Qwen Qwen-1.8B-Chat 26.84% 40.35% 25.15% 22.50% 1.23% 5.56% 27.97% 27.23% 26.91% 24.18% 29.00% 25.27% 5.81% 19.65%
66 DeepSeek MoE deepseek-moe-16b-base 26.65% 41.68% 31.71% 12.27% 4.21% 0.00% 28.09% 25.69% 31.15% 19.66% 27.77% 27.11% 5.38% 22.26%
67 Baichuan2 Baichuan2-13B-Base 26.32% 43.01% 21.48% 16.87% 6.47% 4.98% 22.46% 26.54% 31.79% 25.63% 30.05% 16.24% 9.23% 13.52%
68 DeepSeek LLM deepseek-llm-7b-base 25.34% 36.58% 30.59% 15.33% 2.01% 5.56% 19.59% 27.42% 29.23% 27.22% 28.67% 15.00% 8.97% 25.29%
69 Llama 2 Llama2-13B 24.50% 38.09% 25.73% 15.00% 6.48% 0.00% 21.25% 25.09% 28.38% 24.29% 26.79% 19.80% 9.68% 4.62%
70 Baichuan2 Baichuan2-7B-Base 23.50% 36.59% 23.93% 13.01% 5.99% 4.17% 21.05% 22.93% 28.98% 21.49% 26.03% 19.33% 4.68% 10.70%
71 DeepSeek Coder deepseek-coder-1.3b-base 23.17% 37.06% 26.74% 8.03% 2.84% 4.17% 16.05% 20.93% 34.16% 24.68% 27.02% 14.40% 4.68% 24.92%
72 Qwen Qwen-1.8B 23.12% 37.81% 18.94% 14.04% 3.70% 6.94% 22.07% 24.68% 26.30% 18.44% 25.70% 18.40% 3.72% 24.29%
73 Mistral Mistral-7B-v0.1 22.72% 34.86% 23.00% 15.83% 6.30% 0.00% 20.01% 25.52% 24.24% 21.32% 25.01% 17.47% 10.32% 0.00%
74 Llama 2 Llama2-7B 22.35% 37.45% 21.33% 10.00% 1.85% 4.17% 20.57% 18.80% 28.69% 22.51% 25.28% 18.27% 0.77% 12.64%
75 01.AI Yi-34B 22.01% 34.64% 26.46% 7.73% 1.85% 4.17% 23.15% 16.96% 31.36% 15.32% 23.10% 22.40% 6.15% 11.46%
76 davinci davinci-002 21.25% 33.66% 19.26% 13.61% 5.27% 3.70% 15.05% 19.63% 30.35% 22.70% 25.42% 13.36% 2.61% 4.33%
77 Mixtral mixtral-8x7B 21.21% 32.76% 20.54% 15.23% 3.70% 2.08% 18.04% 14.02% 32.51% 22.78% 23.57% 13.50% 10.00% 16.03%
78 Phi Phi1.5 20.56% 32.15% 20.61% 14.27% 3.40% 0.00% 21.04% 22.86% 21.15% 15.53% 21.83% 21.80% 1.92% 13.97%
79 01.AI Yi-6B 19.93% 31.84% 18.91% 13.13% 0.99% 2.78% 13.75% 23.72% 23.54% 20.37% 23.42% 14.58% 0.00% 4.54%
80 CodeGeeX CodeGeeX2-6B 19.88% 31.40% 17.41% 14.02% 2.22% 4.86% 18.78% 19.97% 25.39% 14.44% 22.08% 16.11% 4.10% 9.78%
81 CodeGen2 CodeGen2-16B 16.97% 27.46% 18.30% 8.08% 1.23% 1.39% 13.00% 17.28% 24.04% 14.23% 20.77% 7.58% 7.05% 0.00%
82 Phi Phi2 16.74% 28.96% 13.97% 8.23% 5.12% 0.00% 17.45% 14.49% 17.17% 18.28% 18.62% 13.33% 1.73% 18.18%
83 InternLM InternLM-7B 16.26% 25.17% 14.34% 10.86% 2.59% 6.25% 8.48% 16.95% 30.14% 10.71% 20.19% 4.89% 1.92% 24.80%
84 IEITYuan Yuan2-51B-hf 15.25% 25.61% 12.20% 6.06% 2.78% 8.33% 20.16% 16.37% 15.38% 4.76% 15.09% 16.83% 1.92% 29.55%
85 Phi Phi1 14.28% 20.78% 17.23% 8.08% 5.87% 0.00% 8.26% 18.93% 18.09% 12.91% 18.04% 3.33% 1.28% 26.65%
86 CodeGen CodeGen-16B-multi 13.62% 20.79% 13.19% 10.86% 2.84% 0.00% 11.36% 17.90% 13.45% 11.43% 16.44% 6.90% 3.08% 8.77%
87 IEITYuan Yuan2-102B-hf 10.48% 18.18% 7.77% 6.82% 1.85% 0.00% 17.12% 9.45% 6.71% 5.24% 8.41% 18.33% 0.00% 19.11%
88 IEITYuan Yuan2-2B-hf 7.28% 9.11% 8.11% 5.56% 5.56% 2.78% 4.01% 8.29% 10.28% 7.62% 8.80% 4.27% 0.00% 6.31%
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